cephalosporins the amide group is always located on the β face. The epimerization of the 7 α -amide function in 5 was achieved according to the elegant method of Baldwin and co-workers¹⁷ and Koppel and Koehler.¹⁸ They demonstrated that methanol adds to acylimines derived from 78-amidocephems stereoselectively from the α face, and, consequently, the amide group assumes the biologically active β configuration.

In order to isomerize the α -amide side chain to the β orientation, compound **5** was methoxylated with lithium methoxide and tert-butyl hypochlorite in THF at -70 °C for 30 min,¹⁸ and 7 β -(phenylacetamido)-7 α -methoxy-1oxacephem ester **619** was obtained as crystals: mp 187-187.5 °C (acetone); 88% yield; NMR (acetone- d_6) δ 1.99 (s, 3, CH₃), 3.46 (s, 3, OCH₃), 3.68 (s, 2, CH₂Ph), 4.34 (br s, 2, C2H), **5.05** *(8,* 1, C6H), 6.91 **(s,** 1, CHPh2), 7.3 (m, 15, aromatic H); IR $(CHCl₃)$ 1780 cm⁻¹; mass spectrum, *mle* 512.

The ester group in **6** was removed with trifluoroacetic acid in anisole at 0 "C for 10-12 min, and the free acid **7** was isolated in 84% yield: mp 169-170 °C (acetone); NMR δ (acetone-d₆) 2.00 (s, 3, CH₃), 3.43 (s, 3, OCH₃), 4.39 (br s, 2, C₂H), 5.08 (s, 1, C₆H), 7.35 (s, 5, aromatic H); IR (KBr) 1782 cm-'.

The 7β -(phenylacetamido)- 7α -methoxy-3-methyl-1-oxacephem acid **7** proved in in vitro tests to be biologically active against gram-negative bacteria.

Registry No. 1, 76172-98-0; 2, 76190-18-6; 3, 76172-99-1; 4a, 03-0; benzhydryl 7a-(phenylacetamido)-3-methyl-3-cephem-4 carboxylate, 76173-04-1; toluenesulfenyl chloride, 933-00-6. 76173-00-7; Ab, 76173-01-8; 5, 76231-32-8; 6, 76173-02-9; 7, 76173-

(19) The β configuration of the amide group in compounds 6 and 7 is **also substantiated by antibacterial activity of the acid 7 as discussed below.**

Janice L. Pfeil, Stjepan Kukolja*

The Lilly Research Laboratories Eli Lilly and Company Indianapolis, Indiana 46285

Leo A. Paquette

Evans Chemical Laboratories The Ohio State University Columbus, Ohio 43210

Received October 28, 1980

Synthesis of 1,3-Enynols and 1,2,4-Trienols via Allenic and Propargylic Borane Intermediates

Summary: Sequential treatment of lithium **chloro**propargylide 1 with **thexylalkenylchlorobranes** and **al**dehydes affords, depending on the reaction conditions, 1,3-enynols or 1,2,4-trienols.

Sir: Treatment of lithium chloropropargylide 1 with trialkylboranes at low temperature results in the transfer of one alkyl group from boron to the propargylic moiety to furnish allenic boranes **2.'** On being warmed to room

temperature, these rearrange to the thermodynamically more stable propargylic boranes 3 (eq 1).² The organo-

R CICH,ECLi -C-CHz RECCHzBRz **(1)** ¹**Re** R2 >-- **³ 2**

boranes **2** and **3** have proven to be versatile intermediates which react with protic reagents and with aldehydes to afford alkylallenes^{1,3} or alkynes³ and homopropargylic² or α -allenic alcohols,² respectively.

It is apparent that the synthetic utilities of the allenic and propargylic boranes would be greatly enhanced if the It is apparent that the synthetic utilities of the allenic
and propargylic boranes would be greatly enhanced if the
conversion $1 \rightarrow 2$ could be extended to the transfer of
alkenyl groups. This would provide access to 1-al allenic boranes **7** and via rearrangement of these to 3 alkenylpropargylic boranes *8.* Thus, we report here that these transformations have now actually been achieved and that the organoboranes **7** and 8 react with aldehydes to produce stereochemically defined 1,3-enynols **9** and 1,2,4-trienols **10** not readily accessible via previously available methodologies.

In our initial studies, we probed the possibility of selectively transferring the alkenyl groups of dialkylalkenylboranes onto lithium chloropropargylide **1.** Unfortunately, treatment of dicyclohexyl- or disiamyl- **(trans-1-octenyl)borane4** with 1 in both cases resulted in nearly exclusive migration of the saturated moieties. It occurred to us that the use of **thexylalkenylchloroborane** *5* might provide a solution to the problem, since the thexyl group exhibits a low migratory tendency in many organoboron-mediated carbon-carbon bond-forming reactions.⁵ We have recently shown that thexylchloroborane **4** is readily accessible through the reaction of thexylborane with ethereal hydrogen chloride.⁶ The reagent cleanly monohydroborates 1-alkynes and disubstituted alkynes to produce the **thexylalkenylchloroboranes 5.**

We were gratified to observe that addition of the thexylalkenylchloroboranes *5* to 2 equiv of lithium chloropropargylide 1 at -78 °C furnished, via the intermediacy of the ate complexes **6,** the alkenylallenic boranes **7.** Treatment of the reaction mixture containing **7** with an aldehyde afforded the 1,3-enynol 9. However, if the initially formed organoborane **7** was brought to room tem-

⁽¹⁷⁾ J. E. Baldwin, F. Urban, R. D. *G.* **Cooper, and F. L. Jose,** *J. Am.*

⁽¹⁸⁾ *G.* **A. Koppel and R. E. Koehler,** *J. Am. Chem.* **SOC., 95, 2403** *Chem. Soc.,* **95, 2401 (1973).** .. **(1973).**

⁽¹⁾ Leung, T.; Zweifel, G. *J. Am. Chem. SOC.* **1974,96, 5620.**

⁽²⁾ Zweifel, G.; Backlund, S. J.; Leung, T. *J. Am. Chem. SOC.* **1978,100, 5561.**

⁽³⁾ Midland, M. M. *J. Org. Chem.* **1977,** *42, 2650.*

⁽⁴⁾ The organobroanes were obtained by hydroboration of I-octyne with dicyclohexylborane and disiamylborane, respectively. (5) Brown, H. C. "Boranes in Organic Chemistry"; Comell University

Press: Ithaca, New York, 1972. Pelter, A.; Smith, K. In "Comprehensive Organic Chemistry"; Barton, D. H. R., Ollis, W. D., Eds.; Pergamon Press: Oxford, 1979; Vol. III. Negishi, E.; Brown, H. C. Synthesis 1974, 77.
(6) Zweifel, G.; Pearson, N. R. J. Am. Chem. Soc. 1980, 102, 5919.

perature, it rearranged to the 3-alkenylpropargylic borane **8.** Reaction of this with an aldehyde produced the 1,2,4 trienol **10** (Scheme I).'

The formations of the alcohols **9** and 10 imply that the reactions of the allenic carbon-boron and propargylic carbon-boron bonds of **7** and **8,** respectively, with the carbonyl group of aldehydes must have both proceeded with bond transpositions.2 **NMR** examination of the alcohols obtained in this study revealed that migrations of the alkenyl groups occurred with retention of configuration. The lack of thexyl-migrated products (<4%) indicates that the thexyl moiety provides an effective anchor group for these types of anionotropic rearrangements.

A typical procedure for the preparation of $9 (R = n C_4H_9$, $\bar{R}^1 = \bar{H}$, $R^2 = C_2H_5$) is as follows. To a cold solution of thexylchloroborane6 in THF (ice bath) was added 1 hexyne (1.64 g, 20.0 mmol) while the temperature was maintained below 10 "C during the addition. The solution was stirred for 10 min at *0-5* "C and then for 1 h at room temperature. The resultant organoborane **5** was transferred via a double-ended needle into the addition funnel of a flask containing lithium chloropropargylide **l2** (40.1 mmol) at -78 "C and added to 1 over a **20-min period** while the temperature was kept below -67 "C. The mixture was stirred for 30 min at -78 °C (dry ice/acetone bath) and then treated with propanal $(1.16 \text{ g}, 20.0 \text{ mmol})$. After the mixture was stirred for 15 min at -78 °C, it was brought to room temperature (30 min), treated with methanol (10 mL), made basic with 6 N NaOH, and oxidized at 30-50 $\rm ^oC$ with 30% $\rm H_2O_2$ (4 mL). The aqueous phase was saturated with solid $K_2CO_3.1.5H_2O$ and extracted with ether, and the combined organic phases were washed with saturated aqueous NaCl. Drying (MgSO₄) and distillation from a small amount of solid CaC03 yielded 2.64 g (74%) of **9:** bp 68-70 °C (0.05 torr); n^{24} _D 1.4859. Anal. Calcd for It should be noted that whereas the 1,3-enynols are amenable to distillation, the 1,2,4-trienols tend to decompose on being heated. $\rm C_{12}H_{20}O:~C$, 79.94; H, 11.18. Found: C, 79.77; H, 10.99.8

The above alcohol syntheses are of considerable value in that they allow for great flexibility in the choice of the alkenyl, aldehyde, and propargylic chloride components. **As** shown in Table I, the structural features of either mono-

Table 1. Yields **of** 1,3-Enynols **9** and 1,2,4-Trienols 10

organoborane 5			yield, % ^{a-c}	
R	R١	R^2 in R^2CHO	9	10
$n\text{-}C_{4}H_{o}$	н	C_2H	74	60
		$i\text{-}C, H,$	76	
		$t\text{-}C_{4}H_{9}$	(88)	(70)
		H,C=CH	71	(72)
	н	C_2H_3	80	
$c\text{-}\mathrm{C}_{_{\mathbf{4}}}\mathrm{H}_{_{\mathbf{1}\mathbf{1}}}$ $t\text{-}\mathrm{C}_{_{\mathbf{4}}}\mathrm{H}_{_{\mathbf{9}}}$		C,H,	(88)	
C_6H_5		C, H,	65	
C.H.	C_2H_5	С,Н.	61	

^a The numbers in parentheses are GLC yields. ^b The IR, 'H NMR, and mass spectral data of the alcohols obtained were consistent with the assigned structures. c The alcohols contained less than 1% of the corresponding 1,2,4-trienols and 1,3-enynols, respectively.

or disubstituted alkynes and saturated or α, β -unsaturated aldehydes may be incorporated into the alcohols **9** and **10.** Also, utilization of substituted propargyl chloride as the alkenyl group acceptor does not adversely affect the yields of enynols. This is exemplified by the conversion shown in eq $2^{9,10}$ Although only one of the two available 3chloro-1-alkynyl groups is consumed, the reaction provides access to highly substituted 1,3-enynols.

In conclusion, sequential treatment of lithium chloropropargylide 1 with **thexylalkenylchloroboranes** and aldehydes provides for unique 1,3- and 1,l-alkenylationalkylations of propargyl chloride. The resultant conjugated 1,3-enynols and 1,2,4-trienols possess functionalities for interconversion into a host of derivatives of potential use in the synthesis of complex molecules. Also, it is conceivable that the 1,2,4-trienols might exhibit physiological activities similar to those found in α -allenic alcohols.¹¹

Acknowledgment. We are grateful to the National Science Foundation for support of this work.

George Zweifel,* Norman R. Pearson

Department of Chemistry University of California Davis, California 95616

⁽⁷⁾ We are currently investigating the reaction of allenic (7) and pro-
pargylic boranes (8) with ketones.
(8) Spectroscopic data for 9: IR (neat) 3400, 3030, 2229, 1626, 970
cm⁻¹; NMR (CCl₄) δ 6.02 (dt, $J = 16$, 7

¹H), 3.58 (p, *J* = 5 Hz, 1 H), 2.61 *(8,* 1 H), 2.40 (dd, *J* = 6, 2 **Hz,** 2 H), **2,05(t,J=7Hz,2H),1.7-1.1 (m,6H),1.1-0.8(m,6H);exactmaea,m/e** 180.1504 (calcd for $C_{12}H_{20}O$ m/e 180.1514). \cdots \cd

⁽⁹⁾ It is noteworthy that warming the allenic borane **11** to room temperature prior to the addition of the aldehyde at -78 °C also affords the alcohol **10. This** implies that the organoborane **11** doe8 not rearrange to the propargylic borane on warming. A similar reluctance of disubstituted allenic boranes to rearrange has been previously observed.³

⁽¹⁰⁾ The metalation of 3-chloro-1-hexyne with *n*-butyllithium was carried out at -110 °C.

⁽¹¹⁾ Galantay, E.; Bacso, I.; Coombs, **R.** V. Synthesis **1974,** 344 and references therein.